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Introduction

The goal of this paper is to investigate the decimal representation of π. We
will see if the decimal representation is unique and if there exist repeating
sequences. Finally, we will prove that π is not a rational number. Recall that
a rational number q = a

b ∈ Q where a, b ∈ Z such that b 6= 0. Furthermore,
we use the convention that the number 0 is included in the set of natural
numbers.

History of irrational numbers

Mathematical problems involving irrational numbers such as
√
2, which is

the diagonal in the unit square, were addressed very early during the Vedic
period in India. The Indian scientist Manava (c. 750 – 690 BC) believed that
the square roots of numbers such as 2,3,5 and so on, could not be exactly
determined with rational numbers.[1]

The first mathematical proof of the existence of irrational numbers was
carried out by a Pythagorean called Hippasus around 500 BC. He showed
that

√
2 cannot be a rational number[2]. Greek mathematicians termed this

ratio of incommensurable magnitudes alogos. Hippasus, however, was not
lauded for his efforts: according to one legend, he made his discovery while
out at sea, and was subsequently thrown overboard by his fellow Pythagore-
ans. Simply because he had discovered an element in the universe which
denied the doctrine that all phenomena in the universe can be reduced to
whole numbers and their ratios.[3]

There are other famous irrational numbers like π, Euler’s number e,
the golden ratio ϕ and many more. In fact as a consequence of Cantor’s
proof (1891) that real numbers are uncountable and the rational numbers
countable, it follows that almost all real numbers are irrational.

In 1761, the German mathematician Johann Lambert proved that π is
an irrational number. In the 19th century, Charles Hermite found a proof
that requires no prerequisite knowledge beyond basic calculus. This proof
has been simplified by Ivan Niven in 1947.[4] We will give a nice detailed
proof of Ivan Niven’s simplification by using basic calculus. Keep in mind
that the proof shows us that π cannot be a rational number. We will not
prove that π exists as a real number, however, given that π exists as a real
number the proof shows us that π is an irrational number.
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Definition 1

An infinite decimal is a sequence of the following form:

q.d1d2d3...

where q ∈ N and di is a digit, ie a natural number between 0 and 9. A
terminating decimal is a decimal

q.d1d2...dn00...

In other words it "ends" and it clearly represents the rational number

q +
d1
10

+
d2
102

+ ...+
dn
10n

.

Definition 2

Given a positive real number r ∈ R+ the infinite decimal expansion of r
is defined as follows: q is chosen so that q ≤ r < q + 1. The digits are then
chosen by induction:

(i) d1 is chosen so that:

q +
d1
10
≤ r < q +

d1
10

+
1

10
.

Since q ≤ r < q + 1 we have that d1 ∈ {0, ..., 9}.
(ii) Each dn+1 is chosen so that:

q +
d1
10

+ ...+
dn+1

10n+1
≤ r < q +

d1
10

+ ...+
dn
10n

+
1

10n+1

Since q + d1
10 + ...+ dn

10n ≤ r < q + d1
10 + ...+ dn

10n + 1
10n we have that dn+1 ∈

{0, ..., 9}. This gives a sequence of terminating decimals, which are rational
numbers,

q, q.d1, q.d1d2, q.d1d2d3, etc.

that converges to r. Thus, r = q.d1d2d3....

Example 1

a) The decimal expansion of 1
3 is 0.3333... because

0.333...3 <
1

3
< 0.333...4

b) We can decimal expand
√
2 as far as we want to by squaring:

12 = 1 < 2 < 4 = 22, so 1 <
√
2 < 2 so q = 1.
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(1.4)2 = 1.96 < 2 < 2.25 = (1.5)2, so d1 = 4.

(1.41)2 = 1.9881 < 2 < 2.0164 = (1.42)2, so d2 = 1.

(1.414)2 = 1.999396 < 2 < 2.002225 = (1.415)2, so d3 = 4.

These are simply the first digits of the infinite decimal expansion of
√
2. It

does not mean that there are any pattern unlike the infinite decimal expan-
sion of 1

3 .

Definition 3

Given a positive rational number l
m , where l,m ∈ N : m 6= 0. We perform

the following divisions with remainders to define the digits of a decimal:

First we set l = mq + r, this defines q and an integer r < m.

Next, define the digits by induction:

(i) Set 10r = md1 + r1, this defines d1, which is a digit, and r1 < m.

(ii) Set each 10rn = mdn+1 + rn+1, this defines dn+1, which is a digit, as
well as rn+1 < m,

and this defines digits dn and remainders rn < m for all n by induction.

Proposition 1. The infinite decimal in the rational expansion of l
m is equal

to its decimal expansion.

Proof. Divide l = mq + r by m to get:

(∗) l
m

= q +
r

m
and then q ≤ l

m
< q + 1, since 0 ≤ r

m
< 1,

so this is the correct q. Next a proof by induction checks the decimals:
(i) Divide 10R = md1 by 10m to get r

m = d1
10 +

r1
10m , and substitute into

(∗) to get:
l

m
= q +

d1
10

+
r1
10m

which proves that d1 is the correct digit, since 0 ≤ r
m < 1.

(ii) Once we know that d1, ..., dn are the correct first n digits and that

(∗∗) l
m

= q.d1d2...dn +
rn

10nm
,

then divide 10rn = mdn+1 + rn+1 by 10n+1m to get rn
10nm = dn+1

10n+1 +
rn+1

10n+1m
,

and substitute into (∗∗) to get:

l

m
= q.d1d2...dn +

dn+1

10n+1
+

rn+1

10n+1m
= q.d1d2...dn+1 +

rn+1

10n+1m
.

This proves that dn+1 is also correct, and completes the proof by induction.
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Definition 4

A repeating decimal is any decimal of the form:

q.d1d2...dkdk+1...dndk+1...dndk+1...

for some pair of natural numbers k < n. The notation for this is

q.d1d2...dkdk+1...dn.

Example 2

An example of a number with a repeating sequence is the famous rational
number 22

7 . The Greek mathematician Archimedes (287-212 BC) showed
that π < 22

7 .

22

7
= 3.142857 = 3.142857142857142857...

Compared to the true value of pi, namely π = 3.141592..., we see the values
are very close and for practical reasons mankind has used π ≈ 22

7 for calcu-
lations involving π. Since 22

7 = 3 + 1
7 we let ξ = 0.142857 and we will now

show that ξ = 1
7 . We have matching digits and by subtraction we get

106ξ − ξ = 142857.142857− 0.142857 = 142857.

Every natural number can be represented by a unique product of prime
numbers. Therefore

ξ =
142857

999999
=

32 · 11 · 13 · 111
32 · 7 · 11 · 13 · 111

=
1

7
.

Proposition 2. All the decimal expansions of rational numbers repeat.

Proof. Consider again step (ii) in the rational expansion of l
m above:

(ii)10rn = mdn+1 + rn+1.

From this step it follows that if rk = rn for some k < n, then:

dk+1 = dn+1 and rk+1 = rn+1,

since 0 = 10rn − 10rk = mdn+1 + rn+1 −mdk+1 − rk+1 = m(dn+1 − dk+1) +
rn+1 − rk+1 and m 6= 0. Since rk+1 = rn+1 we have that

dk+2 = dn+2 and rk+2 = rn+2

and so on and it follows by induction. Thus, when the remainder repeats
for the first time, the decimal repeats. Note that all the remainders are
between 0 and m − 1 so it must eventually repeat. So by the time we have
done m divisions with remainders, we have to come across a repeat of the
remainders.
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Proposition 3. Every repeating decimal is the decimal expansion of some
rational number.

Proof. Let a repeating decimal r be given so that r = q.d1d2...dkdk+1...dn.
We have that

10kr = (10kq + 10k−1d1 + ...+ dk).dk+1...dn

and
10nr = (10nq + 10n−1d1 + ...+ dn).dk+1...dn.

These are matching decimals and from subtraction we get that

10nr − 10kr = (10nq + ...+ dn)− (10kq + ...+ dk)

and dividing both sides by 10n − 10k, we see that r is rational:

r =
(10nq + ...+ dn)− (10kq + ...+ dk)

10n − 10k
.

As a consequence of Proposition 2 and Proposition 3 it follows that all
irrational numbers do not have repeating decimals.

We will now investigate the uniqueness of decimal representations. There
are numbers which have non-unique decimal representations. The example
below shows us that 1 = 1.000... = 0.999..., ie the number 1 has two different
decimal representations.

Example 3

Let ε = 1.0 = 1.000... and δ = 0.9 = 0.999... and notice the following

10δ = 9.9.

We have matching decimals so by subtraction we get

9δ = 10δ − δ = 9.9− 0.9 = 9.

Ie δ = 9
9 = 1 = ε.

Proposition 4. A number with a non-unique decimal representation will
have exactly two representations: one ending in all 0s and one ending in all
9s.
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Proof. Take any positive number a ∈ [0, 1] with decimal representation

a =

∞∑
n=1

an
10n

,

where an ∈ {0, 1, ..., 9}. Suppose that

a =
∞∑
n=1

bn
10n

for some bn ∈ {0, 1, ..., 9}. Then

∞∑
n=1

an − bn
10n

= 0.

Observe that |an − bn| ≤ 9, so that for any N ∈ N, we use the basic sum
rules for geometric series and we get that

|
∞∑
n=N

an − bn
10n

| ≤
∞∑
n=N

9

10n
= 9 ·

∞∑
n=0

(
1

10
)n − 9 ·

N−1∑
k=0

(
1

10
)n

= 9 · 1

1− 1
10

− 9 · (
1− ( 1

10)
N−1

1− 1
10

) = 10− 10 +
1

10N−1
=

1

10N−1

with equality if and only if |an − bn| = 9 for each n ∈ N. Now suppose that
(an) 6= (bn) and let N be the first location where the sequences differ, so
that

∞∑
n=1

an − bn
10n

=
∞∑
n=N

an − bn
10n

= 0.

Then we have that
bN − aN
10N

=
∞∑

n=N+1

an − bn
10n

.

But

|bN − aN
10N

| ≥ 1

10N
≥ |

∞∑
n=N+1

an − bn
10n

|.

We know that these inequalities are really equalities, so without loss of gen-
erality we have that an − bn = 9 for each n > N . Given the constraint
an, bn ∈ {0, 1, ..., 9}, this is only possible if an = 9 and bn = 0. Therefore,
a number with a non-unique decimal representation will have exactly two
representations: one ending in all 0s and one ending in all 9s.

As a consequence it follows that all irrational numbers have an unique
decimal representation.
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Theorem. Pi is not a rational number.

Proof. We will prove the statement by contradiction. Assume that π is a
rational number, ie there exist a, b ∈ N : b 6= 0 where π = a

b and we will find
a contradiction. This will show us that π can not be a rational number.

Step 1

Lets fix a value n ∈ N so we can define the function

α(x) =
xn(a− bx)n

n!
.

We will specify the value of n later.
Define a new function

β(x) := α− α(2)(x) + α(4)(x)− ...+ (−1)nα(2n)(x).

Claim 1: β(0) + β(π) is an integer.
Notice that by expanding out (a− bx)n we get

α(x) =
xn

n!
(a0 + a1x+ ...+ anx

n)

=
a0x

n

n!
+
a1x

n+1

n!
+ ...+

anx
2n

n!

for some integer ai where i ∈ {0, ..., n}.

Case 1: For k < n we have

α(k)(x) =
a0n

n!
xn−1 + ...+

akn(n− 1) · ... · (n− k)
n!

xn−k

+...
an(2n)(2n− 1) · ... · (2n− k)

n!
x2n−k.

For k < n we clearly see that α(k)(0) = 0. In other words we have differen-
tiated too few times.

Case 2: For k ≥ n we get 0 if k > 2n. In other words we have differen-
tiated too many times. Letting k ∈ [n, 2n] we see that the only term that
matters is the k term which is ak

n! x
k. The kth derivative of this is

(
ak
n!
xk)(k) =

akk!

n!
.

so α(k)(0) = akk!
n! . From our assumption k ≥ n, so k!

n! is an integer and
therefore ak

n! k! is an integer. So α(k)(0) is an integer for all k. From this it
follows that β(0) is also an integer.

We observe that
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α(π − x) = (π − x)n(a− b(π − x))n/n!

= (π − x)n(a− bπ + bx)n/n!

= (π − x)(a− a+ bx)n/n!

= (ab − x)
nbnxn/n!

= ((ab − x)b)
nxn/n!

= xn(a−bx)n
n! = α(x).

Hence we have the derivatives

α(x) = α(π − x)

α(x)′ = −α(π − x)′

α(x)′′ = α(π − x)′

...

α(x)(k) = (−1)kα(π − x)(k).

So for x = 0 we get α(k)(0) = (−1)kα(k)(π) and α(k)(π) = (−1)kαk(0) is
an integer, since αk(0) is an integer for all k. Therefore β(π) is an integer
as well. Hence β(0) + β(π) is an integer.

Step 2

Claim 2: β(0) + β(π) =
∫ π
0 α(x) sin(x)dx.

We notice that

β(x)′′ + β(x)

= (α(x)− α(2)(x) + ...+ (−1)nα(2n)(x))′′

+α(x)− α(2)(x) + ...+ (−1)nα(2n)(x)

= α(x)(2) − α(4)(x) + ...+ (−1)nα(2n+2)(x)

+α(x)− α(2)(x) + ...+ (−1)nα(2n)(x)

= α(x)

Note that (−1)nα(2n+2)(x) = 0 because we differentiate a polynomial of
degree 2n more than 2n times. So β(x)′′ + β(x) = α(x). Hence

(β(x)′ sin(x)− β(x) cos(x))′

= β(x)′′ sin(x) + β(x)′ cos(x)− β(x)′ cos(x) + β(x) sin(x)
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= β(x)′′ sin(x) + β(x) sin(x) = (β(x)′′ + β(x)) sin(x) = α(x) sin(x).

From the Fundamental Theorem of Analysis it follows that∫ π

0
(β(x)′ sin(x)− β(x) cos(x))′dx

= β(π)′ sin(π)− β(π) cos(π)− β(0)′ sin(0) + β(0) cos(0)

= β(π) + β(0) =

∫ π

0
α(x) sin(x)dx.

Hereby we have shown that claim 2 is true.

Step 3

So, we know that β(π) + β(0) =
∫ π
0 α(x) sin(x)dx is an integer and we will

now show that the integral has value in the interval strictly between 0 to 1
for all x.

Claim 3: 0 <
∫ π
0 α(x) sin(x)dx < 1. From this it would follow that

0 < β(0) + β(π) < 1, ie an integer is strictly between 0 and 1. Such an
integer does not exist and thereby we have our contradiction.

Lets start to show its strictly above 0. Notice x > 0 since x ∈ (0, π) and
since a and b are strictly positive, we have

0 < x <
a

b
⇒ bx < a⇒ 0 < a− bx

so α(x) > 0 and sin(x) > 0 for all x ∈ (0, π). Thereby we have shown that
0 <

∫ π
0 α(x) sin(x)dx.

We will now show that this is strictly below 1.
Notice that when x ∈ (0, π) we have that sin(x) ≤ 1 and

x(a− bx) = ax− bx2 ≤ ax < aπ

so
α(x) = xn(a− bx)n/n! < anπn/n!.

Combining these inequalities it follows that

0 <

∫ π

0
α(x) sin(x)dx <

∫ π

0

(aπ)n

n!
dx =

(aπ)n

n!

∫ π

0
1dx =

(aπ)nπ

n!
.

Note for any c, r > 0 c·rn
n! < 1 for large enough n. This is a well known

result, and you can prove it by induction if you like to.
From this is follows that (aπ)nπ

n! < 1 for large enough n. Hereby we have
specified our n and we have our contradiction.
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Conclusion

As a consequence of Proposition 2, Proposition 3 and Proposition 4 it follows
that all irrational numbers have a unique decimal representation and do
not have repeating decimals. We proved that π is an irrational number.
Therefore, we know that the decimal representation of π is unique and do
not have repeating decimals.
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